
Agile Methodologies 
Sakshi Sachdeva1 

trehansakshi21@gmail.com 

Abstract: Agile software development methods have been 
developed and evolved since early 1990s. This paper explains 
the differences between traditional software development 
methods and agile software development methods, and 
introduces the characteristics of some of the popular agile 
methods, Scrum and extreme programming.  

Methods like SCRUM, Extreme programming (XP) etc are 
increasingly being used to develop software using an 
adaptation approach rather than a predictive one. This paper 
basically reviews different agile methodologies, how they are 
divergent from the conventional process methods and gives an 
insight of into the current agile methods. 

Keywords: Agile, Waterfall, Scrum, Extreme Programming, 
Sprint, Product Owner 

1. INTRODUCTION

Scrum is part of the Agile movement.  Scrum and other 
agile methods were inspired by the shortcomings of the 
dominant software development project management 
paradigms (including waterfall). It borrows many principles 
from lean manufacturing. In 2001, 17 pioneers of similar 
methods met at the Snowbird Ski Resort in Utah and wrote 
the Agile Manifesto, a declaration of four values and 
twelve principles. These values and principles stand in 
stark contrast to the traditional Project Manager’s Body of 
Knowledge (PMBOK). The Agile Manifesto emphasized 
on communication and collaboration, functioning software, 
team self-organization, and the flexibility to adapt to 
emerging business realities. 
The Agile Manifesto doesn’t provide concrete steps. 
Therefore, Organizations seek more specific methods 
within the Agile movement which include Crystal Clear, 
Extreme Programming, Feature Driven Development, 
Dynamic Systems Development Method (DSDM), Scrum, 
and others. Scrum is the one that enables initial 
breakthroughs. Scrum’s simple definitions give the team 
the autonomy they need to do their best work while helping 
their boss (who becomes the Product Owner) get the 
business results he wants. A truly agile enterprise would 
not have a “business side” and a “technical side.” It would 
have teams working directly on delivering business value.  
Scrum’s early users adapted feedback loops to cope with 
complexity and risk. Scrum emphasizes decision making 
from real-world results rather than speculation. Scrum is a 
simple set of roles, responsibilities, and meetings that never 
change. Time is divided into short work cadences, known 
as sprints, typically one week or two weeks long. The 
product is tried to be kept in a potentially shippable 
(properly integrated and tested) state at all times. At the end 
of each sprint, stakeholders and team members meet to see 

a demonstrated potentially shippable product increment and 
plan its next steps. 
SCRUM defines the systems development process as a 
loose set of activities that combines known, workable tools 
and techniques with the best that a development team can 
devise to build systems. Since these activities are loose, 
controlling measures are used to manage the process and 
inherent risk. SCRUM is an also considered as an 
enhancement of the commonly used iterative/incremental 
object-oriented development cycle. [2] 
New approaches like SCRUM focus on iterative and 
incremental development, customer collaboration, and 
frequent delivery through a light and fast development life 
cycle. Although there are many positive benefits of agile 
approaches that include shorter development cycle, higher 
customer satisfaction, lower bug rate, and quicker 
adaptation to changing business requirements, there have 
been few empirical field studies on issues and challenges of 
ASDMs. Therefore, the aim of this research paper was to 
discover the issues and challenges of one particular agile 
method in practice, Scrum, through a comparative study of 
traditional vs agile approaches.[1] 

2. TRADITIONAL SOFTWARE DEVELOPMENT METHODS

(TSDMS) 
The most common traditional software development 
method is the waterfall model. The waterfall model utilizes 
a structured progression between defined phases: planning, 
analysis, design, implementation, and maintenance. The 
planning phase which occupies typically about 15% of total 
Systems Development Life Cycle (SDLC) is the process in 
which the scope of the new system is identified, why a 
system should be built is understood, and how the project 
team will go about building it is identified through 
technical, economical, and organizational feasibility 
analysis. The analysis phase, analyzes the current system, 
its problems, and then identifies ways to design the new 
system through requirements gathering. The design phase 
(35%) decides how the system will operate in terms of 
hardware, software, and network infrastructure. The 
implementation phase (30%) is the actual programming and 
coding. The maintenance phase (5%) focuses on go-live, 
training, installation, support plan, documentation, and 
debugging. Figure 1 below show a typical waterfall 
lifecycle. As we can see in the figure, each phase must be 
accomplished before the following phase can begin and 
each phase cannot go back to the previous phase like water 
in the waterfall cannot climb up once it reaches to a lower 
position and therefore this model does not accommodates 
any change. 

Sakshi Sachdeva / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 40-44

www.ijcsit.com 40



PLANNING     

 ANALYSIS    

  DESIGN   

   IMPLEMENTATION  

    MAINTENANCE 

 
Figure: 1 Waterfall model lifecycle 

 
Over the past four decades, traditional waterfall-style 
software development methods have been widely used for 
large-scale projects in the software industry and in the 
government sector due to their predictability, stability, and 
high assurance. As mentioned earlier, however, TSDMs 
have a number of key shortcomings, including slow 
adaptation to constantly changing business requirements, 
and a tendency to be over budget and behind schedule with 
fewer features and functions than specified. TSDMs are 
unable to respond to change and it is difficult to define all 
the requirements at the beginning of the project. 
Many researches show that only a small percentage of 
projects that used traditional methods were completed on-
time and on-budget with all features and functions 
specified. However, major percentage of the projects were 
completed either over-budget, over the time estimate and/or 
offering less features and functions; some of the projects 
were canceled at some point during the development cycle. 
To overcome these shortcomings and issues, several 
practitioners developed agile software development 
methods including Scrum, extreme Programming (XP), 
Crystal, and Adaptive Software Development (ASD). The 
next section discusses the characteristics and principles of 
agile software development methods. [1] 
 
3.  AGILE SOFTWARE DEVELOPMENT METHODS (ASDMS) 
The manifesto for agile software development which was 
created by seventeen practitioners in 2001 
(http://www.agilemanifesto.org), reveals which items are 
considered valuable by ASDMs. ASDMs concentrate more 
on  
 
1) Individuals and interactions than processes and tools,  
2) Working software than comprehensive documentation,  
3) Customer collaboration than contract negotiation, and 
4) Responding to change than following a plan.[1] 
 
 The twelve principles behind the agile manifesto also 
present the characteristics of ASDMs.  
 
1) Our highest priority is to satisfy the customer through 

early and continuous delivery of valuable software. 
2) Welcome changing requirements, even late in 

development. Agile processes tackle change for the 
customer's competitive advantage. 

3) Deliver working software frequently, from a couple of 
weeks to a couple of months, with a preference to the 
shorter timescale. 

4) Business people and developers must work together 
daily throughout the project. 

5) Build projects around motivated individuals. Give 
them the environment and support they need, and trust 
them to get the job done. 

6) The most efficient and effective method of conveying 
information to and within a development team is face-
to-face conversation. 

7) Working software is the primary measure of progress. 
8) Agile processes promote sustainable development. The 

sponsors, developers, and users should be able to 
maintain a constant pace indefinitely. 

9) Continuous attention to technical excellence and good 
design enhances agility. 

10) Simplicity--the art of maximizing the amount of work 
not done--is essential. 

11) The best architectures, requirements, and designs 
emerge from self-organizing teams. 

12) At regular intervals, the team reflects on how to 
become more effective, then tunes and adjusts its 
behavior accordingly.[3] 

Agile values and principles emphasize to focus on the 
people involved in a project and how they interact and 
communicate with each other within a team. Agile values 
and principles helps enhances team morale and better 
velocity than a team with poor functioning of talented 
individuals.[4] 
According to English Dictionary, the word “agile” has two 
meanings: 
 
 (Mentally quick) able to think rapidly and clearly. 
 (Physically quick) able to move your body quickly and 

fluently. 
 
This definition addresses the response to change feature in 
agile methods. Alistair Cockburn, one of the initiators of 
the agile movement in software development, defines agile 
as “agile implies being effective and maneuverable. An 
agile process is both light and sufficient. The lightness is a 
mean of staying maneuverable. The sufficiency is a matter 
of staying in the game”  
Barry Boehm described agile methods as “an outgrowth of 
rapid prototyping and rapid development experience as 
well as the resurgence of a philosophy that programming is 
a craft rather than an industrial process” [3] 
 

4. HOW AGILE IS DIFFERENT FROM TRADITIONAL 

APPROACHES 
The Agile users claim that ASDMs have the potential to 
provide higher customer satisfaction, lower bug rates, 
shorter development cycles, and quicker adaptation to 
rapidly changing business requirements. Boehm believes 
that the primary focus of ASDMs is on rapid value whereas 
the primary focus of TSDMs is on high assurance. He also 
believes that ASDMs should be used for small teams and 
projects. If the size of the team and projects are large he 
suggests TSDMs. 

 
 
 

Sakshi Sachdeva / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 40-44

www.ijcsit.com 41



Agile Approaches Traditional Approaches 

The approach while using 
agile methods is adaptive. 

The approach while using 
traditional methods similar to 
waterfall is generally predictive. 

Flexibility and responsiveness 
is the goal. 
 

Optimization is the goal. 

It is an iterative and 
exploratory technique which is 
followed beyond formal rules. 

It is deliberate and formal 
technique in which linear 
ordering of steps is followed 
and is typically rule-driven. 

Concurrent and asynchronous 
process. 

Sequential and synchronous 
process. 

As the same team is 
developing throughout, it is 
people centered process. 

As people will change 
according to different phases, it 
is work centered process. 

Documentation is minimal. Documentation is substantial. 

Provide quick responds to user 
feedback. 

Too slow to provide fixes to 
user. 

Can respond to customer 
requests and changes easily. 

Change requirements is difficult 
in later stages of the project. 

5 minutes discussion or scrum 
meetings (which are too short) 
may solve the problem. 

Documents and review 
meetings are needed to solve an 
issue. 

High level of communication 
and interaction is there. 

There is no or very little 
communication within the team. 

As the work is done in sprints, 
therefore the releases are out 
fast for customer review. 

Normal releases take a lot of 
time to be formally out for the 
customer to test. 

Table 1. How Agile is Different from traditional 
Approaches [3], [1] 

 
5. AGILE PROCESSES 

Under the name of “Agile” term, there are more specific 
approaches such as Extreme Programming (XP), Scrum, 
Crystal Methods, Dynamic Systems Development Method 
(DSDM), Feature-Driven Development (FDD), Adaptive 
Software Development (ASD), and Lean Development. 
Many studies have been conducted on agile methods. Also, 
many books and articles analyzed and compared agile 
methods in details. Two agile methods, XP and Scrum will 
be discussed with more details. 
5.1 Extreme programming 
Extreme programming (XP) is one of the first agile 
processes that have been proposed. It works by bringing the 
whole team together in the presence of simple practices, 
with enough feedback to yield a successful software 
Practice. The focus of XP is on the business aspect of a 
project resulting in increased productivity.  
5.1.1 Basic Extreme Programming 
Whole Team: The team is considered to be very important 
in XP. In Extreme Programming, every contributor to the 
project is an integral part of the “Whole Team”. The team 
forms around a business representative called “the 
Customer”, who sits with the team and works with them 
daily. The team may consist of developers, who are 
responsible for the development of the software, testers 
who are responsible for providing Quality Assurance, and 
analysts who help in design and the customer representative 

who provides the feedback. The customer representative 
may be the actual end user of the system. 
Planning: Planning is needed for the estimations of effort 
and cost required to develop project. These estimates 
during the planning are very effective because the product 
is visible all time. There are two types of planning in XP 
methodology. 

1) Release Planning: The customer presents features 
that are expected by him in the software to 
developer. The developer reviews these features 
and then estimate their difficulty. With the cost 
estimates in hand, and with knowledge of the 
importance of the features, the Customer lays out 
a plan for the project. Initial release plans are 
necessarily imprecise and XP teams revise the 
release plan regularly.  

2) Iteration Planning: is the practice whereby the 
team is given direction every couple of weeks. 
The customer presents the features which need to 
be developed over the next iteration. XP teams 
build software in two-week “iterations”, delivering 
running useful software at the end of each 
iteration. The programmers break down the 
required features into tasks, and estimate their cost 
(at a finer level of detail than in Release Planning). 
Based on the amount of work accomplished in the 
previous iteration, the team signs up for what will 
be undertaken in the current iteration. Also each 
iteration helps in learning about the product. 

These planning steps are very simple, yet they provide very 
good information and excellent control in the hands of the 
Customer. Every couple of weeks, the amount of progress 
is entirely visible. There is no “ninety percent done” in XP: 
a feature story was completed, or it was not. This focus on 
visibility results in a nice little paradox: on the one hand, 
with so much visibility, the Customer is in a position to 
cancel the project if progress is not sufficient. On the other 
hand, progress is so visible, and the ability to decide what 
will be done next is so complete, that XP projects tend to 
deliver more of what is needed, with less pressure and 
stress. 
Customer Tests: As part of presenting each desired feature, 
the XP Customer defines one or more automated 
acceptance tests to show that the feature is working. The 
team builds these tests and uses them to prove to 
themselves, and to the customer, that the feature is 
implemented correctly. Automation is important because in 
the press of time, manual tests are skipped. That’s like 
turning off your lights when the night gets darkest. 
The best XP teams treat their customer tests the same way 
they do programmer tests: once the test runs, the team 
keeps it running correctly thereafter. This helps improving 
the system, always notching forward, never backsliding. 
Small Releases: The customer defines the features that have 
to be in project, represented as stories. Every story 
represents the smallest increment to which new features of 
the system can be added, which usually takes only a few 
weeks to be developed. 
The team releases the running and tested software to the 
customer after every iteration. The customer evaluates the 

Sakshi Sachdeva / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 40-44

www.ijcsit.com 42



software or releases of the product. The release cycles are 
very frequent. The releases which are delivered frequently 
undergo continuous integration and thorough testing. 
Simple Design: The design shows the functionality of the 
system. To achieve simple design, XP emphasize on using 
refactoring techniques such as removing duplicated code, 
improving the existing design. The system is required to be 
verified to be still operational after refactoring activity 
takes place. The XP process requires that all the phases of 
software development viz. design, implementation, and 
testing of the system should be carried out by a pair of 
programmers sharing one computer. This helps 
programmers to spend more time on finding solutions to 
challenging problem and less time doing routine 
debugging. 
Pair Programming: By pair programming we mean that, the 
code is written by two programmers on a single machine. 
This ensures that the code is reviewed by at least another 
programmer. This will lead to a better design, testing and 
code. 
 
5.2 Scrum 
Scrum is a light weight method for the development of 
software whose principle lies in the fact that small teams 
working cross functionally produce good results. It is more 
revenue centric with a focus on improving revenue and 
quality of the software. Since it is lightweight it can adapt 
to changing requirements. Scrum releases the software in 
small release cycles called sprints. 
This method has a framework which needs to be followed 
during development. The team can choose the amount of 
work, staff and how to get the work done. This ensures to 
give the scum team great flexibility and enhances a 
productivity of the work done. [7] 
Scrum is a simple set of roles, responsibilities, and 
meetings that never change. It emphasizes decision making 
from actual results rather than speculation. Short time work 
cadences, known as sprints are typically one week or two 
weeks long. The product is kept in a potentially shippable 
(properly integrated and tested) state at all times. At the end 
of each sprint, stakeholders and team members meet to see 
a demonstration of a potentially shippable product 
increment and plan its next steps.[2] 
Three important things in scrum are: 
A) The Product Owner,  
B) The scrum master and  
C) The team.  
 
The Product Owner should be a person with vision, 
authority, and availability. The Product Owner is 
continuously communicating the vision and priorities to the 
development team. 
As the scrum values self-organization among teams, a 
Product Owner must fight the urge to micro-manage. At the 
same time, Product Owners must be available to answer 
questions from the team. He is responsible for getting 
initial and on-going funding for the project by creating the 
project’s overall requirements, return on investment (ROI) 
objectives, and release plan. 

Scrum Master (SM) is responsible for ensuring that Scrum 
values, practices, and rules are enacted and enforced. The 
SM acts as an intermediary between the management and 
the team and therefore is responsible for enabling 
cooperation across all roles and functionality.  
The Scrum Master acts as a facilitator for the Product 
Owner and the team. The Scrum Master does not manage 
the team. The Scrum Master works to remove any 
impediments that are obstructing the team from achieving 
its sprint goals. He makes sure that the team is functioning 
properly and is productive at all times. This helps in 
making sure the team's successes are visible to the Product 
Owner. The Scrum Master also works to advise the Product 
Owner about how to maximize ROI for the team. 
 
The Team is responsible for the actual implementation of 
the functionality described in the requirements. Scrum 
teams should be self-managing, self-organizing, and cross- 
functional to maximize performance. All of the team 
members are responsible for both the success and the 
failure of sub-systems and of entire systems. A Scrum 
development team contains about seven fully dedicated 
members (officially 3-9), ideally in one team room 
protected from outside distractions. For software projects, a 
typical team includes a mix of software engineers, 
architects, programmers, analysts, QA experts, testers, and 
UI designers. In each sprint, the team is responsible for 
determining how it will accomplish the work to be 
completed and meet the goals of the sprint. [1] 
In addition, Scrum has a set of ceremonies associated with 
it. They include the sprint planning meeting, Daily Scrum 
Meeting and Sprint review meeting. 
 The sprint planning meeting is between the customer and 

the team. The product owner prepares an artifact called 
the Product Backlog has a list of features of the 
product which are still not implemented including 
functionality and technical architecture. This artifact is 
discussed and the timelines related to the features 
included in it are negotiated as well. 

 The Daily Scrum meeting is a fifteen minute session 
initiated by the scrum master. The master reviews the 
work that is done regarding development, discusses the 
obstructions if any and also assigns the work to be 
done too. 

 The sprint review meeting is held with the customer to 
discuss the code developed over the last sprint or 
release cycle. 

All the stakeholders involved with the product can 
participate in the meeting and provide inputs for the 
next sprint. This meeting makes use of two artifacts 
called the Sprint Backlog and Burn down Chart which 
record the activities involved in the sprints. The sprint 
Backlog is a subset of the product backlog. 

The sprints or iterations are around 30 days in length. [3] 
Scrum fits well into small projects. Requirements can be 
prioritized in a well-structured manner. But, a disadvantage 
of using Scrum methodology is that the customer is offsite 
and therefore tight customer collaboration is not possible. 
Also improved team dynamics enabled by Scrum are not 
available in one-developer project. [6] 

Sakshi Sachdeva / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 40-44

www.ijcsit.com 43



CONCLUSION 
This article described a new type of model for software 
development i.e. agile software development. In this paper 
also introduces the roles, ceremonies, and artifacts of 
Scrum, which is one of the most well-known agile software 
development methods in the industry and discussed some 
key artifacts of another agile methodology called as 
extreme programming.  
Agile software development methods were developed to 
provide more customer satisfaction, to shorten the 
development life cycle, to reduce the bug rates, and to 
accommodate changing business requirements during the 
development process. This paper presents characteristics of 
traditional software development methods and agile 
software development methods, and the differences 
between them.  
Agile approaches are meant to increase fastness and 
flexibility in the software projects. We understood that 
agile methods are a highly practical oriented field. The 
application of different practices of XP and Scrum differ 
from company to company. So to say, sound judgment on 
agile methods can be done by doing rigorous case studies, 
using the historical record of the companies and their 
projects.  
 

REFERENCES 
[1] Juyun Cho, "ISSUES AND CHALLENGES OF AGILE 

SOFTWARE DEVELOPMENT WITH 
SCRUM" http://iacis.org, 2008. [Online]. 
Available: http://iacis.org/iis/2008/S2008_950.pdf. 

[2]  "Scrum Methodology," [Online].  
 Available: http://scrummethodology.com/. 
[3]  Beck, Kent; et al. (2001). "Principles behind the Agile 

Manifesto". Agile Alliance. Archived from the original on 14 
June 2010. Retrieved 6 June 2010. 

[4]  Sakshi Sachdeva, "Agile testing”, Vol. 6 (2), 2015.[Online]. 
Available: 
http://www.ijcsit.com/docs/Volume%206/vol6issue02/ijcsit2
0150602188.pdf. 

[5]  Kaushal Pathak, "Review of Agile Software Development 
Methodologies”  Volume 3, Issue 2, February 2013, 
[Online]. Available: 
http://www.ijarcsse.com/docs/papers/Volume_3/2_February2
013/V3I2-0251.pdf. 

[6]  Kuda Nageswara Rao, G, "A Study of the Agile Software 
Development Methods, Applicability and Implications in 
Industry”, Vol. 5 No. 2, April, 2011.[Online]. Available: 
http://www.sersc.org/journals/IJSEIA/vol5_no2_2011/4.pdf. 

 

 
 

 
 
 

Sakshi Sachdeva / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 40-44

www.ijcsit.com 44




